98 research outputs found

    Minimum-Variance Importance-Sampling Bernoulli Estimator for Fast Simulation of Linear Block Codes over Binary Symmetric Channels

    Full text link
    In this paper the choice of the Bernoulli distribution as biased distribution for importance sampling (IS) Monte-Carlo (MC) simulation of linear block codes over binary symmetric channels (BSCs) is studied. Based on the analytical derivation of the optimal IS Bernoulli distribution, with explicit calculation of the variance of the corresponding IS estimator, two novel algorithms for fast-simulation of linear block codes are proposed. For sufficiently high signal-to-noise ratios (SNRs) one of the proposed algorithm is SNR-invariant, i.e. the IS estimator does not depend on the cross-over probability of the channel. Also, the proposed algorithms are shown to be suitable for the estimation of the error-correcting capability of the code and the decoder. Finally, the effectiveness of the algorithms is confirmed through simulation results in comparison to standard Monte Carlo method

    Decision Fusion with Unknown Sensor Detection Probability

    Full text link
    In this correspondence we study the problem of channel-aware decision fusion when the sensor detection probability is not known at the decision fusion center. Several alternatives proposed in the literature are compared and new fusion rules (namely 'ideal sensors' and 'locally-optimum detection') are proposed, showing attractive performance and linear complexity. Simulations are provided to compare the performance of the aforementioned rules.Comment: To appear in IEEE Signal Processing Letter

    A Unifying Framework for Adaptive Radar Detection in Homogeneous plus Structured Interference-Part II: Detectors Design

    Full text link
    This paper deals with the problem of adaptive multidimensional/multichannel signal detection in homogeneous Gaussian disturbance with unknown covariance matrix and structured (unknown) deterministic interference. The aforementioned problem extends the well-known Generalized Multivariate Analysis of Variance (GMANOVA) tackled in the open literature. In a companion paper, we have obtained the Maximal Invariant Statistic (MIS) for the problem under consideration, as an enabling tool for the design of suitable detectors which possess the Constant False-Alarm Rate (CFAR) property. Herein, we focus on the development of several theoretically-founded detectors for the problem under consideration. First, all the considered detectors are shown to be function of the MIS, thus proving their CFARness property. Secondly, coincidence or statistical equivalence among some of them in such a general signal model is proved. Thirdly, strong connections to well-known simpler scenarios found in adaptive detection literature are established. Finally, simulation results are provided for a comparison of the proposed receivers.Comment: Submitted for journal publicatio

    Low-complexity dominance-based Sphere Decoder for MIMO Systems

    Full text link
    The sphere decoder (SD) is an attractive low-complexity alternative to maximum likelihood (ML) detection in a variety of communication systems. It is also employed in multiple-input multiple-output (MIMO) systems where the computational complexity of the optimum detector grows exponentially with the number of transmit antennas. We propose an enhanced version of the SD based on an additional cost function derived from conditions on worst case interference, that we call dominance conditions. The proposed detector, the king sphere decoder (KSD), has a computational complexity that results to be not larger than the complexity of the sphere decoder and numerical simulations show that the complexity reduction is usually quite significant

    Distributed Detection in Wireless Sensor Networks under Multiplicative Fading via Generalized Score-tests

    Get PDF
    In this paper, we address the problem of distributed detection of a non-cooperative (unknown emitted signal) target with a Wireless Sensor Network (WSN). When the target is present, sensors observe an (unknown) deterministic signal with attenuation depending on the unknown distance between the sensor and the target, multiplicative fading, and additive Gaussian noise. To model energy-constrained operations within Internet of Things (IoT), one-bit sensor measurement quantization is employed and two strategies for quantization are investigated. The Fusion Center (FC) receives sensor bits via noisy Binary Symmetric Channels (BSCs) and provides a more accurate global inference. Such a model leads to a test with nuisances (i.e. the target position xT) observable only under H1 hypothesis. Davies framework is exploited herein to design the generalized forms of Rao and Locally-Optimum Detection (LOD) tests. For our generalized Rao and LOD approaches, a heuristic approach for threshold-optimization is also proposed. Simulation results confirm the promising performance of our proposed approaches.acceptedVersio

    Spatio-Temporal Decision Fusion for Quickest Fault Detection Within Industrial Plants: The Oil and Gas Scenario

    Get PDF
    In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.acceptedVersio

    Massive MIMO meets decision fusion: Decode-and-fuse vs. decode-then-fuse

    Get PDF
    We study channel-aware decision fusion over a multiple-input multiple-output (MIMO) channel in the largearray regime at the decision-fusion center (DFC). Inhomogeneous large-scale fading between the sensors and the DFC is consider in addition to the small-scale fading, and pilot-based channel estimation is performed at the DFC. Linear processing techniques are analyzed in order to design low-complexity alternatives to the optimum log-likelihood ratio test (LLRT). Performance evaluation based on Monte Carlo simulations are presented

    Employing Unmanned Aerial Vehicles for Improving Handoff using Cooperative Game Theory

    Get PDF
    Heterogeneous wireless networks that are used for seamless mobility are expected to face prominent problems in future 5G cellular networks. Due to their proper flexibility and adaptable preparation, remote-controlled Unmanned Aerial Vehicles (UAVs) could assist heterogeneous wireless communication. However, the key challenges of current UAV-assisted communications consist in having appropriate accessibility over wireless networks via mobile devices with an acceptable Quality of Service (QoS) grounded on the users' preferences. To this end, we propose a novel method based on cooperative game theory to select the best UAV during handover process and optimize handover among UAVs by decreasing the (i) end-to-end delay, (ii) handover latency and (iii) signaling overheads. Moreover, the standard design of Software Defined Network (SDN) with Media Independent Handover (MIH) is used as forwarding switches in order to obtain seamless mobility. Numerical results derived from the real data are provided to illustrate the effectiveness of the proposed approach in terms of number of handovers, cost and delay

    On Time-Reversal Imaging by Statistical Testing

    No full text
    • …
    corecore